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Abstract
The deformation of the classical action for a point-like particle recently
suggested by Staruszkiewicz gives rise to a spin structure which constrains
the values of the invariant mass and the invariant spin to be the same for any
solution of the equations of motion. Both these Casimir invariants, the square of
the 4-momentum vector and the square of the Pauli–Lubański vector, are shown
to preserve the same fixed values also in the presence of an arbitrary external
electromagnetic field. In the ‘free’ case, in the centre-of-mass reference frame,
the particle moves along a circle of fixed radius with arbitrary varying frequency.
In a homogeneous magnetic field, a number of rotational ‘states’ are possible
with frequencies slightly different from the cyclotron frequency, and ‘phase-
like’ transitions with spin flops occur at some critical values of the particle’s
3-momentum.

PACS numbers: 03.30.+p, 03.50.De, 41.60.Ap

1. Introduction: the Staruszkiewicz model

From the times of Frenkel [1] and Mathisson [2], or from later works [3, 4], a lot of attempts
have been undertaken to unambiguously formulate the dynamics of a classical spinning particle
[5–10]. Most of them deal with generalizations of the classical point-mass Lagrangian
(−mc

√
ẋẋ) through the introduction of terms with higher derivatives or ‘inner’ variables,

and then try to restrict the undesirable freedom by making use of some geometrical [11, 12]
or symmetry [13, 14] considerations. A thorough analysis of extra variables responsible for
the spin structure has been carried out by Hanson and Regge [15]. Rivas [16] proposed to
make use of a complete set of parameters of the kinematical symmetry group and obtained
considerable restrictions on the spin dynamics (so-called atomic hypothesis).

However, a lot of problems arising within the classical description of spin still have to be
solved. Corresponding Lagrangians, especially in their interaction part, are rather ambiguous,

1751-8113/09/315204+17$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/31/315204
http://stacks.iop.org/JPhysA/42/315204


J. Phys. A: Math. Theor. 42 (2009) 315204 V Kassandrov et al

cumbersome and have no correspondence with generally accepted gauge theories and with
the structure of the Lorentz force in the spinless limit in particular [17]. The Schrödinger
zitterbewegung motion, being a common feature of different spin models, results in the
problem of radiation of electromagnetic waves, and the invariant spin is not bound to preserve
its value in the presence of external fields (as one expects for an innate characteristic of
elementary particle). Thus, the ‘zitterbewegung’ radius and the magnitude of spin are, as a
rule, to be fixed ‘by hands’. Generally, it is not quite clear which properties of the spin could
arise in the framework of a successively classical relativistic model.

Meanwhile, in a short note [18] Staruszkiewicz has offered a fairly simple relativistic
model for a classical particle with spin. Specifically, instead of the consideration of a general
local reference frame related to the orientation of the spin vector, he restricted additional
degrees of freedom by a single null vector kμ(τ), (k · k) = 0 attached to each point of a
trajectory of the classical particle. We note that Lorentz indices hereafter are labelled by
Greek letters μ, ν, . . . = 0, 1, 2, 3, whereas (a · c) = a0c0 − �a�c denotes the Lorentz scalar
product. The derivative d/dτ with respect to an invariant time parameter τ (identified later
with the particle’s proper time) is denoted by a dot.

Remarkably, if l is a new universal constant, a fundamental length, corresponding to
this additionally introduced variable, one essentially has the only possibility to construct a
dimensionless, relativistic and translation invariant quantity

ζ = l2 (k̇ · k̇)

(k · ẋ)2
, (1)

which is moreover reparametrization τ �→ g(τ) and projective kμ �→ h(τ)kμ invariant, g and
h being arbitrary smooth and monotonic (as to g) functions of the invariant time parameter τ .

Now one can write down the most general deformation of the well-known relativistic
invariant point-mass action described by a position 4-vector xμ(τ) and a null direction 4-
vector kμ(τ) in a unique and simple form [18]

S =
∫

L dτ = −mc

∫
dτ

√
ẋ · ẋf (ζ ). (2)

In order to fix a particular form of the unknown function f (ζ ),3 Staruszkiewicz, inspired
by the idea of ‘irreducibility’ from the famous paper by Wigner [19], requires then for the
values of both Casimir invariants of the Poincaré group to take one and the same value on
any solution to the model (2). He asserts that such a requirement leads to two differential
equations for the unknown f (ζ ). According to [18], these equations have only one common
solution that uniquely defines the form of the function f (ζ ) to be

f =
√

1 +
√

−ζ . (3)

The two Casimir invariants associated with the action (2) are the 4-momentum vector
square

I1 = (P · P) (4)

and the square

I2 = (W · W) (5)

of the Pauli–Lubański pseudovector

Wμ = − 1

2mc
εμνρσMνρP σ , (6)

3 For the energy to be positive definite one requires f (ζ ) > 0 provided m > 0.
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responsible for the invariant (i.e. independent on the origin) and conserved spin structure. In
equation (6), Mνρ is the (conserved) total angular momentum tensor of the Lagrangian (2).
According to statements made in [18], for any solution of the equations of motion with the
choice (3) for the function f (ζ ), the invariants I1 and I2 take the only possible values

I1 = (mc)2 and I2 = − 1
4 (mcl)2. (7)

Thus, in the framework of (generalized) classical mechanics of the ‘free’ particle one is able to
elegantly describe its spin structure and, moreover, to ensure the property of spin (and mass)
‘quantization’. For some preliminary chosen ‘ethalon’ units {m, c, l}, the Staruszkiewicz
model corresponds to a point relativistic particle of constant and universal mass and spin. In
particular, one can equate the fundamental length to the Compton wavelength l = h̄/mc, so
that the value of the spin is then one half of the Planck constant,

S = √−W · W = 1
2mcl = 1

2h̄.

In view of these intriguing properties, our main goal in this paper is to prove the statements
of Staruszkiewicz in [18] and to generalize these to the case when the spinning particle interacts
with an external electromagnetic field. We shall also study some unusual properties of exact
solutions to the equations of motion for a ‘free’ particle and for a particle in a homogeneous
magnetic field.

2. Conservation laws and fixed invariants of the model

Let us first note that due to the above-mentioned local symmetry kμ → h(τ)kμ the quantity
ζ in (1) depends only on the ratio of the components of the null vector kμ, namely, on the
components na = ka/k0, a = 1, 2, 3, of the unit 3-vector �n = {na}, �n2 = 1. Specifically, one
obtains

−ζ = l2 �̇n�̇n
(ẋ0 − �n�̇x)2

. (8)

Thus, the individual components of the null vector kμ are not determined, and only the direction
vector �n = �k/k0 will finally enter the equations of motion. However, to explicitly preserve
relativistic invariance in the variational principle an additional term λ(k · k) with Lagrangian
multiplier λ has to be added to the action (2).

We shall also from the very beginning switch on the electromagnetic interaction by
introducing the usual and (modulo total time derivative) gauge-invariant term −(e/c)ẋμAμ,
with e being the electric charge of the particle and Aμ the 4-potential of the external
electromagnetic field. Thus, we shall deal with the action

S =
∫

L dτ, L = −mc
√

(ẋ · ẋ)f (ζ ) − e

c
(ẋ · A) + λ(k · k). (9)

Consider now the integrals of motion related to translational and rotational symmetries of
the model (9). For the canonical 4-momentum πμ = −∂L/∂ẋμ one obtains

πμ = Pμ +
e

c
Aμ, Pμ := mc

ε
f ẋμ + Bkμ, (10)

where ε = √
ẋ · ẋ and

B = −2mc
ε

(k · ẋ)
ζf ′(ζ ), (11)

with ′ denoting the differentiation with respect to ζ . Calculating the square of the kinematical
4-momentum Pμ, one obtains for the first Casimir invariant

I1 = (P · P) = (mc)2(f 2 − 4ζff ′). (12)
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Now one is ready to write down the first set of the Euler–Lagrange equations of motion

Ṗμ = mc
d

dτ

(
f

ε
ẋμ − 2εζf ′

(k · ẋ)
kμ

)
= Fμ, (13)

where Fμ stands for the 4-vector of Lorentz force,

Fμ = e

c
Fμνẋ

ν, (14)

with Fμν being the electromagnetic field strength tensor,

Fμν = ∂μAν − ∂νAμ, ∂μ =:
∂

∂xμ
.

The ‘internal 4-momentum’ Qμ is a direct analogue of the ordinary one with respect to
additional degrees of freedom related to the null 4-vector kμ,

Qμ = − ∂L

∂k̇μ
= Gk̇μ, G = 2mcεl2 f ′

(k · ẋ)2
, (15)

so that the second set of equations looks as follows:

Q̇μ = − ∂L

∂kμ
, → d

dτ
(Gk̇μ) = Bẋμ − 2λkμ, (16)

where B turns out to be the same as in (11). We are now ready to introduce the angular
momentum skew symmetric tensor

Mμν = x[μPν] + k[μQν] = mc

ε
f x[μẋν] + Bx[μkν] + Gk[μk̇ν], (17)

with the notation A[μBν] = AμBν − AνBμ to be used hereafter.
The angular momentum is conserved in the absence of an external field. Indeed,

calculating with the help of (10), (13), (15) and (16) its invariant time derivative, one obtains

Ṁμν = x[μFν]. (18)

Let us now specify the form of the Pauli–Lubański pseudovector (6) with the expression
for kinematical part Pμ from (10) to be used instead of the canonical 4-momentum πμ. Making
also use of (17), one obtains

Wμ = −Gf (ζ )

ε
εμνρσ kν k̇ρ ẋσ , (19)

so that the expression for the second Casimir invariant (5) looks as follows:

I2 = (W · W) = G2f 2

ε2
(k · ẋ)2(k̇ · k̇) = 4(mcl)2ζf 2(f ′)2. (20)

Now, following Staruszkiewicz and equating the two Casimir invariants (12) and (20) to
their required values (7), one arrives at two differential equations for the same unknown f (ζ ),
namely,

f 2 − 4ζff ′ = 1 (21)

and

−ζf 2(f ′)2 = 1
16 . (22)

The first equation can easily be integrated leading (on account of (8), ζ is negative on
solutions) to the following general solution:

f (ζ ) =
√

1 + C
√

−ζ , (23)
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with C being an arbitrary constant. For C = 0, the model reduces to the canonical one for a
free spinless particle. For nonzero C �= 0, it is easy to verify that the function (23) satisfies
also the second equation (22) provided |C| = 1. Thus, one is finally left with two different
solutions common to equations (21) and (22)

f (ζ ) := f± =
√

1 ±
√

−ζ , (24)

from which only the first one f = f+ corresponds to that presented in [18]. The second case
f = f− must be studied on equal footing. Below we shall see that a distinction between these
two cases is essential and interesting from a physical point of view.

We see therefore that for the action (9) with fixed dimensional constants m, l and e and
the function f (ξ) taking one of the two obtained forms (24), expression (12) is identically
a constant number; the same is true for expression (20). Thus, we have proved that both
Casimir invariants take the same fixed values for any solution of the Staruszkiewicz model in
the presence of an arbitrary external electromagnetic field provided the interaction is taken
to be minimal. This is just the remarkable property one observes for a real quantum particle,
whereas here it holds on a purely classical level. We are not aware of whether such a property
holds in any other model of classical spin dynamics.

Making use now of expressions (13) and (18) for the variation of the linear and angular
momentum, one obtains for the derivative of the Pauli–Lubański pseudovector with respect to
invariant time parameter

Ẇμ = − G

2mc
εμνρσ kν k̇ρF σ . (25)

On account of the constant (and universal) values of the Casimir invariants (12) and (20), the
relations (P · Ṗ ) = 0 and (W · Ẇ ) = 0 must be fulfilled identically. On the other hand, one
can explicitly obtain these products using (10) and (17) together with the equations of motions
(13) and (18), respectively. Taking also into account the obvious identity

(ẋ · F) = Fμνẋ
μẋν ≡ 0,

one arrives at the following two relations:

0 ≡ (P · Ṗ ) = −2mc2ζf ′

(k · ẋ)
(k · F), 0 ≡ (W · Ẇ ) = − mc2l2

4(k · ẋ)
(k · F), (26)

which should be fulfilled ‘on shell’. Thus, for any solution to the equations of motion the null
4-vector kμ is necessarily orthogonal to the 4-vector Fμ of the Lorentz force,

(k · F) = Fμνk
μẋν ≡ 0. (27)

Of course, the property (27) can be derived explicitly from the equations of motion themselves,
without any direct account of the identities (12) and (20); however, this requires rather lengthy
computations. From the condition (27) it also follows that the orientation of vector �n is
instantaneously in correspondence with the direction of electromagnetic field and, even at the
initial instant, cannot be set in an arbitrary manner. Below (section 4) we shall consider this
property in the particular case of a homogeneous magnetic field.

Let us now come back to the whole system of equations of motion (13), (16) and identify
hereafter the parameter τ with proper time along the particle’s trajectory so that one has

ε = c
√

(u · u) = c,

with uμ = ẋμ/c being the 4-velocity unit vector. Eliminating also λ and passing thus to the
unit 3-vector na = ka/k0, one obtains from (16)

l2

c2

d

dτ

(
f 2f ′ �̇n

Z2

)
= ζff ′

Z
(u0�n − �u), (28)
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where the abbreviation

Z := f (u0 − �n�u) ≡ f (k · u)/k0 (29)

was introduced. Separating now the spatial part in (13), we close the system of equations of
motion as follows:

d

dτ

(
f �u − 2ζff ′

Z
�n
)

= e

mc
(u0 �E + �u × �H), (30)

with �E, �H being the electric and magnetic field strength vectors, respectively. In addition, the
remaining temporal part of (13) reads

d

dτ

(
f u0 − 2ζff ′

Z

)
= e

mc
�E�u, (31)

and is not independent but follows from (30): it just represents the theorem for the change of
energy.

In general, the equations for the 4-momentum (30) and (31) differ in structure from the
canonical ones but reduce to the latter in the limit l → 0. Later on we shall see if such
reduction is in agreement with the additional equations (28) for the unit 3-vector �n.

3. ‘Centre-of-mass frame’ and dynamics of ‘free’ spinning particle

Now we switch off the external electromagnetic field by setting Fμ = 0 in order to see if some
internal motion (‘zitterbewegung’) of the ‘charge-position vector’ relative to the centre-of-mass
can be accomplished by a ‘free’ spinning particle, in analogy with many other classical spin
models (see, e.g., the review in [13]). To start with, we can take into account the conservation
of momentum (10) and angular momentum (17) in the absence of a field. This allows one
to pass, through a Lorentz boost and a three-translation, to a distinguished centre-of-mass
reference frame defined by the following conditions:

Pa = 0 (P0 = mc), M0a = 0, a = 1, 2, 3. (32)

Equations (30) and (31) now simplify to

�u − 2ζf ′

Z
�n = 0

and

u0 − 2ζf ′

Z
= 1

f
,

where Z is defined by (29). Multiplying the first of these equations by �n and taking into
account the second one, one gets Z = 1. Now, after substitution of the particular form (24) of
f (ζ ), the first set of equations of motion takes the simple form

�u = ±u�n, u = |�u| =
√−ζ

2f
= ω0l

2c
(33)

and

u0 = 1

f
± u, (34)

where the characteristic ‘frequency’ ω0, depending on ζ , comes into play,

ω0 := c
√−ζ

lf (ζ )
(35)

6
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and the different signs correspond to those of the functions f = f± in (24). Note that
the direction 3-vector �n is, respectively, parallel or antiparallel to the 3-velocity, and that
equation (34) is a direct consequence of (33) as long as the function f (ζ ) satisfies the defining
relation (21).

The second set of equations (28) simplifies now to

d

dτ

(
�̇n
ω0

)
= −ω0�n, (36)

and together with (33) forms a closed system defining the position vector �x and the direction
unit vector �n. Taking vector product of the above equations with �n, one finds that for any
solution there exists a conserved pseudovector4

�ν = 1

ω0
�n × �̇n, �̇ν = 0. (37)

Since this is constant and orthogonal to both �̇n and �n, the latter at all times lies in a fixed
plane. From the parallelism (33) of �n and the 3-velocity vector �u one concludes that the spatial
motion of the particle is also in a plane.

As a result, for the unit vector �n the most general (up to a 3D rotation and time shift) form
is as follows:

�n = {cos κ, sin κ, 0}, (38)

with κ = κ(τ) being some function of the proper time parameter. Now equations (36)
immediately lead to the relation

κ̇ = ±ω0, (39)

whence the dependence of ω0 on time remains undetermined and different signs correspond
to opposite directions of rotation (in definitely oriented centre-of-mass reference frame).

For both, the relative orientations of the 3-vectors �n and �u, in accord with (33), may
be different. However, the direction of the spin 3-vector �S = {Wa} is the same for both
orientations and depends only on the direction of rotation. Indeed, from the general expression
(19) one has

�S = {Wa} = 2ml2f ′f 2�n × �̇n = ±2mcl(ff ′√−ζ )�ez = ± 1
2mcl�ez, (40)

where �ez is a unit vector along the z-axis, and the expression in parentheses is taken to be 1/4
in accordance with the second defining equation (22) for the generating function f (ζ ). Thus,
the spin vector is orthogonal to the plane of rotation, and its sign depends only on the direction
of rotation. As a whole, four different degenerate ‘configurations’ are possible (figure 1)5. As
for the temporal component W0 of the Pauli–Lubański 4-vector, it is proportional to (�̇n · �n× �u)

and, therefore, zero. For the position vector one obtains then by integrating equations (33)

�x = l

2
{sin κ,− cos κ, 0}, (41)

where the constant of integration was set to zero since the origin is placed at the centre-of-mass
point (32), M0a = 0. We see that the ‘free’ particle always moves along a circle with fixed
radius

R = l

2
, (42)

4 This is in fact equal to the spin vector �S, see equation (40).
5 Physical situations represented by (a) and (b), as well as by (c) and (d) panels of figure 1, are in fact equivalent but
can be distinguished by a particular observer.

7



J. Phys. A: Math. Theor. 42 (2009) 315204 V Kassandrov et al

S

ω0

(a) (b)

(c) (d)

S

ω0

S

ω0

S

ω0

Figure 1. Relative orientations of the 3-velocity �u, the direction 3-vector �n and the spin 3-vector
�S under uniform internal rotation in the ‘free’ case and in the centre-of-mass reference frame with
definite orientation.

and when the value of the spin is set equal to one half of the Planck’s constant, S = h̄/2,
then the diameter of the circle of rotation is exactly equal to the Compton length. Thus, the
particle itself is not located at its own centre of mass but circles around the latter. This is a
common feature of different classical spin models [13]; however, the radius therein is usually
quite arbitrary and is fixed (‘quantized’) ad hoc.

Moreover, only in the considered model one comes across the stochastic-type
zittebewegung phenomenon in full sense of the word. Indeed, the rotation frequency (35)
defined according to (8) through the ζ -variable remains indefinite or uncontrolled. Indeed,
calculating ζ from the defining formula (8) and making use of expressions (38), (39) and
(41) for the corresponding variables, one obtains an identity. Thus, the time variation of the
parameter ζ and frequency ω0 can indeed be arbitrary.

It is noteworthy to point out that independently on the particular form of the considered
model, the simple equation (36) for the unit 3-vector �n turns to describe, on account of its
general solution (38), an important dynamical system, namely, a plane rotator with arbitrary
varying frequency ω(τ). It is also of interest that introducing a new ‘internal’ timescale σ(τ)

(more precisely, phase scale),

dσ = ω0(τ ) dτ (43)

one reduces (36) to the equations

d2�n
dσ 2

= −�n, (44)

8
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with a unique solution corresponding to a plane rotation (clock- or anticlockwise) with constant
unit frequency (in the specially adopted time scale). Of course, the trajectory of the particle,
a circle of fixed radius (42), is itself invariant under any timescale reparametrizations. On the
other hand, we shall see below that in realistic situations, when a constant external field is
present, the frequency of rotation is as a rule constant and fixed in value.

In the simplest case one can consider the value of
√−ζ to be a constant, with its range

for the choice f = f− of the function (24) being restricted by the requirement 0 < −ζ < 1.
Then, according to (38) and (39), our ‘free’ particle accomplishes a uniform rotation with
constant in time (but arbitrary!) frequency ω0 = c

√−ζ/ lf (ζ ) (the direction of rotation can
be arbitrary whereas the relative orientations of the 3-vectors �u and �n in view of (33) are
different for the two different generating functions f = f±).

For the temporal component of the 4-velocity one then gets

u0 =
√

1 + u2 =
√

1 +

(
ω0l

2c

)2

. (45)

One can easily check that the same expression for u0 follows from (34). This allows one to
pass from the proper time parameter τ to the laboratory time,

dτ = c dt/u0, (46)

and to obtain the 3-velocity va = dxa/dt and physical frequency of rotation ω. One finds

�v = ωl

2
{cos ωt, sin ωt, 0}, ω := ω0√

1 + (ω0l/2c)2
. (47)

One can see that the linear velocity never exceeds the speed of light, v2 = �v�v < c2. It is also
interesting (and even striking!) that the spin vector does not depend on the speed of rotation of
the particle. In particular, the frequency ω0 (and ω) can be arbitrarily small and close to zero,
so that in the limit one has an indefinite direction of the spin vector but its modulus remains
fixed.

Mathematically, this corresponds to an uncertainty of the type 0/0 in the expression for
the second Casimir invariant (20). When the sign of frequency and direction of rotation are
changed, one has a spin-flop transition at this critical point. In the following section, we shall
see that the same phenomenon also takes place for the particle in a homogeneous magnetic
field and thus may be of universal nature. In the ‘free’ case, however, the law of motion may
be arbitrary. Particularly, when ζ and thus ω are constant, the position vector will move (as
it usually takes place in the classical spin models) along a helix-like curve.

4. Frequency shift and spin-flop transitions in the magnetic field

Here we consider the classical problem of a relativistic charged particle in a constant and
homogeneous magnetic field. The action (2) of the spinning particle contains the coupling of
the particle to the magnetic field and one of the two generating functions f = f± in (24). The
energy E is then conserved, so that instead of (31) one gets

f
(
u0 − y

Z

)
= E

mc2
= δ = const > 1, (48)

whereas the principal equation (30) for 3-momentum �P takes the form

d

dτ

( �P
mc

)
= d

dτ

(
f �u − f

y

Z
�n
)

= −��u × �h. (49)

9
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Here Z = f (u0 − �u�n) has been defined in (29), y is given by

y = ±
√−ζ

2f±
= ±ω0l

2c
, (50)

and � stands for the canonical cyclotron frequency (with respect to the proper time scale) of
a particle in a homogeneous magnetic field of strength H,

� = eH

mc
. (51)

Here we assume that the charge of the particle is elementary and negative (electron), whereas
�h is the unit vector in the direction of the magnetic field which is aligned with the z-axis.

It follows from (49) that the formerly considered ‘free’ case, corresponding to H = 0
and �P = 0, is not a well-defined limit of the motion in a homogeneous magnetic field. The
limiting ‘free state’ resulting from the limiting process will actually depend on the ratio of the
external parameters � and P = | �P | as the two approach zero, and this points to the degeneracy
of the ‘free state’.

The component of the 3-momentum along �h is conserved, so that we can get rid of the
corresponding uniform motion by setting Pz = 0. However, for the spinning particle this
condition does not imply uz = 0; instead one gets uz = (y/Z)nz.

The resulting motion in the z-direction could correspond to a precession of the spin
vector. Here, however, we shall only consider the simplest case of a plane motion and hence
set uz = nz = 0.

From the identity (27) for the case of a pure magnetic field it follows that

�h · (�u × �n) = 0, (52)

so that the vectors �h, �u and �n lie instantaneously in one and the same plane. For the considered
motion in the plane orthogonal to the magnetic field this means that the vectors �u and �n are
either parallel or antiparallel, that is,

�u = (�u�n)�n. (53)

Now equations (28) for the unit vector �n can be simplified to the form

d

dτ

(
�̇n

ω0Z2

)
= −ω0�n, (54)

strongly resembling the evolution equation in the ‘free’ case (36).
Contracting equations (49) with �n, one easily gets

f
(
�u�n − y

Z

)
= ± P

mc
= γ = const, (55)

where P stands for the conserved modulus of the 3-momentum. By virtue of the fixed mass
invariant one has then the usual energy–momentum relation

δ =
√

1 + γ 2, (56)

where γ may be either positive or negative. In fact, it is the projection of 3-momentum onto
the �n-direction whose sign depends on the relative orientation of �n and �u, see below.

Combining now equations (48) and (49), one finds

Z = δ − γ = const > 0, (57)

so that the considered system of equations simplifies to

γ �̇n = −(�u�n)��n × �h, (58)

10
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d

dτ

(
�̇n
ω

)
= −ω�n, ω = ω0(δ − γ ) ≡

√−ζc

f l
(δ − γ ) (59)

and two additional (though not independent) relations

δ = f u0 − yf

δ − γ
, (60)

γ = f (�u�n) − yf

δ − γ
. (61)

Equations (59) may be solved similarly as in the ‘free’ case leading to the solution

�n = {cos κ, sin κ, 0}, κ̇ = ±ω. (62)

Substituting this into the first set of equations (58), one obtains

κ̇ = �
(�u�n)

γ
, (63)

and, because of (62), finds for the rotational frequency

ω = �
u

|γ | . (64)

For the radius R of the circular orbit one obtains the same expression

R = cu

ω
= c|γ |

�
, (65)

as for a canonical spinless particle. Analogously, expression (40) for the spin vector

�S = {Wa} = ± 1
2mcl�ez (66)

is still valid in the considered case of a plane motion in a magnetic field. We conclude that the
spin is always polarized along the z-direction, with its sign being dependent on the direction
of rotation (which may differ from the canonical one, see below).

From (61) one concludes now that the frequency of rotation ω does not coincide with the
canonical cyclotron frequency �,

ω

�
= u

|γ | �= 1. (67)

Note that both frequencies are measured here with respect to proper time of the particle;
however, the ratio (67) is invariant under any change of timescale.

Substituting the expressions for (�u�n) from (61) and for ω from (59) one arrives at the
following exact equation for the value of the ‘hidden parameter’

√−ζ :√
−ζ

(
±δ − γ

α
∓ 1

2γ (δ − γ )

)
= 1, (68)

where the following small parameter α appears:

α = �l

c
= h̄�

mc2
. (69)

To get the last relation, we assumed l = h̄/mc so that the value of the spin would be
equal to that of a quantum-mechanical electron projected onto the z-axis. Note that all signs
in (68) are independent, the left pair corresponds to opposite directions of rotation and the
right pair—to the possible choices f± for the generating function (24). In addition, one should

11
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H

S

ω = Ω

−e

FL

Figure 2. ‘Canonical’ orientation of the 3-velocity �u, magnetic field �H and Lorentz force �FL in
the ‘macroscopic’ case R 
 l.

take into account that the sign of γ is not determined. Later on we shall consider various
possible combinations of these signs in more detail.

Observe that for the particular case of an electron, even in the strongest magnetic fields
achieved in laboratories (H ∼ 104 G), the numerical value of α does not exceed 10−15.
Moreover, another dimensionless parameter α/|γ | seems to be of fundamental importance in
the model. In fact, a macroscopic radius of rotation R = c|γ |/� greatly exceeds the Compton
wavelength l, R 
 l, so that for the above parameter one gets

α

|γ | � 1. (70)

Thus, the two external quantities governing the classical behaviour of the electron in a
homogeneous magnetic field, namely, the strength H ∼ α of the field and the 3-momentum
P ∼ |γ |, define two small parameters. We shall see that the latter determine small corrections
to the rotational characteristics of a spinning particle in a homogeneous magnetic field.

For such a macroscopic motion, the direction of rotation is defined by the orientation
of the ordinary Lorentz force towards the centre of rotation, see figure 2. The canonical
motion corresponds to a positive sign in the expression for the frequency (62), so that from
the principal equation (68) one gets for ζ the following expression:√

−ζ = α

δ − γ

(
1 ∓ (α/γ )

2(δ − γ )2

)−1

, (71)

and this yields then the 3-velocity and frequency of rotation,

u

|γ | = ω

�
= (δ − γ )

√−ζ

αf±
= 1

f±

(
1 ∓ (α/γ )

2(δ − γ )2

)−1

, (72)

where the sign in parentheses correlates with the choice of generating function f±.
The last expression is exact and general, provided the direction of rotation is the canonical

one. It describes four different configurations corresponding to the choice of f = f± and
the different orientations of �n relative to �u. They are all non-degenerate and define different
3-velocities and frequencies for the same total 3-momentum |γ |. In particular, for the relative
frequency shift

� = (ω − �)/� � 1,

12
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one obtains in leading order in the small parameters α and α/|γ |:

(a) f = f+, −�n ‖ �u(γ < 0) : � ≈ − (α/|γ |)
2(δ + |γ |)2

− α

2(δ + |γ |) , � < 0 (73)

(b) f = f−, �n ‖ �u(γ > 0) : � ≈ − (α/γ )

2(δ − γ )2
+

α

2(δ − γ )
, (74)

(c) f = f+, �n ‖ �u(γ > 0) : � ≈ (α/γ )

2(δ − γ )2
− α

2(δ − γ )
, (75)

(d) f = f−, −�n ‖ �u(γ < 0) : � ≈ (α/|γ |)
2(δ + |γ |)2

+
α

2(δ + |γ |) ; � > 0. (76)

Note that for the configurations with negative γ the sign of the frequency shift is fixed; this
is easy to understand taking into account that the addition to the canonical expression for the
three-momentum in (49) is positive for configuration (a) and negative for configuration (d) so
that the period of rotation has to increase or decrease, respectively. In the other two situations
the effect depends on the relative magnitudes of the magnetic field and 3-momentum.

In the ultra-relativistic case E/mc2 = δ 
 1, the parameter (δ − γ ), for configurations
with parallel �n and �u and γ ∼ δ > 0, decreases as 1/2δ, and one gets for (75) and (74)
respectively:

f = f±, �n ‖ �u : � ≈ ±αδ ≡ ±
(

h̄�

mc2

) (
E

mc2

)
. (77)

Even in this case, however, the frequency shift is hardly detectable in a laboratory. Indeed,
for achievable field strengths of 104 G, the parameter α is approximately 10−15 for electrons,
whereas for an energy of 100 GeV one gets δ ∼ 2 × 105 such that the relative frequency shift
is less than � ∼ 10−10. This seems to be too small to be detectable on account of the required
constancy of energy and homogeneity of the magnetic field. We shall, however, postpone the
detailed discussion of this problem to a forthcoming publication.

Let us now turn to the more complicated and questionable non-relativistic case of small 3-
momenta |γ |. In the model, this corresponds to a microscopic radius of the electron’s gyration
R ∼ l = h̄/mc ∼ 2.5 × 10−12 m and such microscopic orbits, as generally accepted, should
be described by quantum theory. Nonetheless, we shall now consider solutions corresponding
to the microscopic orbits in a magnetic field from a purely classical point of view.

For small 3-momenta one can set δ − γ ≈ 1 in the general formula (68) and obtain for
the

√−ζ parameter

√
−ζ � α

(
±1 ∓ α

2γ

)−1

, (78)

and for the frequency of gyration

ω

�
� 1

f±

(
±1 ∓ α

2γ

)−1

, (79)

assuming for the expression in parentheses to be non-negative on solutions.
In particular, for |γ | > α/2, the parameter

√−ζ is only positive for the canonical direction
of gyration (this corresponds to the positive sign for the left pair in parentheses). In this case,
the two solutions for which√

−ζ � α(1 + α/2|γ |)−1

13
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H f = f+

P

S

ω

−e

FL

H f = f−

P

S

ω

−e

FL

(a) (b)

Figure 3. Configurations for the spinning particle rotating in the magnetic field that exist for any
value of the particle’s momentum: on the left (a) f = f+ and on the right (b) f = f−.

are well defined even for very small values of 3-momentum |γ |. They correspond to the
following configurations:

(a) f = f+, γ < 0 (−�n ‖ �u)

(b) f = f−, γ > 0 (�n ‖ �u),

see figure 3. For |γ | → 0 and small but fixed α, both
√−ζ and ω approach zero as ∼|γ |, and

in the limit of a ‘particle at rest in a magnetic field’ the internal motion is ‘frozen’, whereby
the magnitude of the spin vector (66) is preserved.

For the two other configurations corresponding, for |γ | > α/2, to the canonical direction
of gyration and to

(c) f = f+, γ > 0 (�n ‖ �u)

(d) f = f−, γ < 0 (−�n ‖ �u),

the parameters
√−ζ , ω and 3-velocity u behave as

√
−ζ � α

(
1 − α

2|γ |
)−1

, ω � �
√

α

(
1 − α

2|γ |
)−1/2

, u = αω

2�
,

and diverge at the critical value of three-momentum |γ | = α/2. Interestingly, the singular
behaviour happens when the radius of gyration R = l/2 is equal to that in the ‘free’ case. Note
also that for the second kind of function f− =

√
1 − √−ζ the solution disappears before the

critical value is reached, namely, at
√−ζ = 1; however, the difference in the values for the

critical parameters is very small and we neglect it for the sake of simplicity.
One should further take into account that physical observables should be defined according

to the laboratory timescale, not to the proper time one. In particular, the physical 3-velocity v

and frequency of rotation ωph are defined as follows:

v

c
= u√

1 + u2
, ωph = ω

√
1 − (v/c)2 ≡ ω√

1 + u2
, (80)

so that near the critical point |γ | = α/2, where the 4-velocity u and proper-time frequency ω

increase without limits, the physical velocity approaches the speed of light, v → c, and for
the physical frequency of gyration one obtains

ωph = ω√
1 + u2

� ω

u
= �

|γ | � 2�

α
= 2mc2

h̄
. (81)
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H
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ω

(meff > 0)

−e
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|γ | ≈ α/2, f = f+

H

P

S

ω

(meff < 0)

−e
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Figure 4. The rotation in a magnetic field is discontinuous at a critical value of the 3-momentum.
Shown are the canonical direction of rotation (meff > 0) and the rotation in the direction opposite
to the force (meff < 0). In both cases f = f+ and |γ | ≈ α/2.

Thus, near the critical point the frequency of gyration remains finite and close to one half of
the internal de Broglie frequency �DB associated with the particle,

ωph = 1
2�DB, h̄�DB = mc2. (82)

In order to better understand what could happen with a particle when its 3-momentum
approaches the critical value, let us examine the opposite range for the 3-momentum,
|γ | < α/2. In this range, apart from the two formerly considered configurations (a) and (b)
with canonical direction of rotation, two unusual and at macro-level forbidden configurations
with direction of rotation opposite to the canonical one can occur (for f = f+ see figure 4,
right panel). The particle is accelerated in the direction opposite to the Lorentz force acting
on it, and to explain this formally one has to prescribe a negative effective mass (meff < 0)

to the particle. For such unusual configurations, the parameters
√−ζ , ω and u behave in the

critical range as

√
−ζ � α

(
α

2|γ | − 1

)−1

, ω � �
√

α

(
α

2|γ | − 1

)−1/2

, u = αω

2�
,

and thus diverge at the critical momentum, similarly as for cases (c) and (d) considered above.
Again the corresponding physical quantities remain finite, v → c and ωph → 1

2�DB. These
‘exotic’ configurations correspond to the following conditions: (cc) f = f+, γ < 0, or (dd)
f = f−, γ > 0. Note, however, that for the opposite direction of rotation γ > 0 corresponds
to −�n ‖ �u and vice versa. Thus, near the critical value of the 3-momentum |γ | = α/2
the configurations (c) and (cc) (as well as (d) and (dd)) have opposite directions of rotation,
opposite directions of unit 3-vector �n and of the spin vector �S (see figure 4 for f = f+).

We can thus conjecture that when the 3-momentum of a particle rotating in a magnetic
field approaches (say, through radiation) the critical value |γ | = α/2, its dynamics becomes
irregular, and a phase-like transition to another rotational state may happen, under preservation
of energy, 3-momentum and magnitude of the spin vector, but through a flip of the directions
of the spin vector, unit 3-vector and vector of 3-velocity. This very much resembles a quantum
transition with spin flop and, perhaps, can be thought of as its classical counterpart. However,
a lot of work has still to be done to comprehend such a complicated and unusual dynamics,
even within the framework of a ‘textbook’ problem of motion of a charged particle in the
homogeneous magnetic field.

15



J. Phys. A: Math. Theor. 42 (2009) 315204 V Kassandrov et al

5. Conclusion

We are accustomed to consider spin as a purely quantum property of particles. In
quantum theory, discretization of spin is associated with the finite-dimensional irreducible
representations of the Lorentz group. In the classical limit, this should be consistent with
universality of the values of second Casimir invariant. As a rule, however, this is not supported
by the equations of motion and is usually taken to be a constant number ‘by hands’.

The same is true even for a weaker requirement of preservation of a particle’s spin
in external fields demonstrated by real elementary particles but having no evident counterpart
in external or internal symmetries (contrary to preservation of mass and charge). To ensure the
preservation at the classical level, one usually [1, 3] needs to impose an additional ‘Frenkel-
like’ orthogonality condition on the solutions of the equations of motion.

In this respect, the model proposed by Staruszkiewicz is quite remarkable since the
modulus of the spin 4-vector becomes therein universal, one and the same for any solution,
even under the presence of the arbitrary electromagnetic field (section 2). Contrary to the
situation in other models (see, e.g. [1–4]), this property is here a direct consequence of the
equations of motion themselves and need not to be postulated via imposition of an additional
constraint or obtained from the classical dynamics via a not yet well-defined quantization
procedure.

From a general point of view, the proposed deformation of the standard action seems
to be quite natural, motivated by deep symmetry and other physical considerations and,
in a sense, unambiguous. The two permitted forms for the generating function found
above (section 2) may be thought of as corresponding to two types of charged elementary
particles of different mass but the same spin (if, instead of universal l the constant h̄/mc with
universal h̄ is introduced into the action). However, at present all such conjectures seem to be
speculative.

In the model, the original 4-orthogonality condition (27) is always fulfilled ‘on shell’
and coordinates the spatial and spin dynamics allowed by the equations of motions. In
particular, the model demonstrates a number of quite remarkable properties with respect to
the particle’s dynamics in the ‘free’ case and in the presence of a homogeneous magnetic field
(sections 3 and 4, respectively). Some of these (fixed radius and indefinite alteration of the
frequency of zitterbewegung, spin-flop ‘phase-like’ transitions) strongly resemble quantum
phenomena, others (cyclotron frequency shift) can help to experimentally test the model. Of
course, the model requires deep rebuilding of the presently accepted paradigm when one
claims to relate it to real physics.

It is also noteworthy that some properties peculiar for the model under consideration
(plane character of the Zitterbewegung, magnitude of its radius equal to half a Compton
wavelength etc) draw it nearer to some other models, in particular to that developed by Rivas
[13, 16] from rather general symmetry considerations. It would be interesting to find out
whether his approach and the Staruszkiewicz model can in fact be coordinated and united in
the starting principles as well as in the predicted spin dynamics.

In any case, however, mathematical beauty and simplicity of the considered model,
its correspondence with the canonical electrodynamics in the spinless case, together with
experimental verifiability, make it a nice ‘toy model’ to interpret some properties of real
spinning particles at a purely classical and visual level of consideration.
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